If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9t^2+7t=0
a = 4.9; b = 7; c = 0;
Δ = b2-4ac
Δ = 72-4·4.9·0
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-7}{2*4.9}=\frac{-14}{9.8} =-1+3.5/8.16666666667 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+7}{2*4.9}=\frac{0}{9.8} =0 $
| -1/3x-1/5=-1/2 | | -119=b/7+-138 | | 17x-9(x=4=3x-26 | | 2/x-1=x/10 | | z/22-(-439)=452 | | 0.4x+0.1=0.8x-11 | | 9b+18=360 | | 5n+1-8n=-3n | | v/22-245=-238 | | 7x–4=3x+16 | | 69=9+6k | | x^2+14.8x+58.76=0 | | 23-(-t)=-6 | | 6x-3-8x=5+4x-2 | | G(t-2)=7t^2-8t+6 | | 5z-(-3)=28 | | 7-4(x-6)=15 | | 2w-3-2w=7 | | {10x-1}+2=19 | | 14o-16=39 | | j/6+21=28 | | 19+8b=43 | | -77w=108 | | x^2+10.8x+29.16=0 | | -108=4(3m-3) | | x/51+7=-10 | | 8x-9-3x=10+5x | | -3y-8=6y+1 | | 5+5v=-5 | | 12y-3y=49 | | 5x-2(x+2)=-2x-14 | | -34=m/8+-37 |